Software Development

Fibonacci and Lucas Sequences

This posts touches on three of my favorite topics – math, transferring knowledge through experience (tutorial unit tests) and the importance of research.

Most developers are aware of the Fibonacci sequence, mostly through job interviews.

To briefly recap the series is defined a:

F(n) = F(n-1) + F(n-2), n > 2
F(1) = F(2) = 1

 
There’s a variant definition:

F(n) = F(n-1) + F(n-2), n > 1
F(1) = 1
F(0) = 0

There are four well-known solutions to the white-board question “write code to calculate F(n)”.

Recursion – you need to mention this to show that you’re comfortable with recursion but you must also mention that it’s a Really Bad Idea since it requires O(2n) time and space stack since you double the work for each n.

Recursion with memoization – this can be a good approach if you point out it’s a good generalization. Basically it’s recursion but you maintain a cache (the memoization) so you only need to make the recursive call once – subsequent recursive calls just look up the cached value. This is a flexible technique since it can be used for any pure recursive function. (That is, a recursive function that depends solely on its inputs and has no side effects.) The first calls require O(n) time, stack and heap space. I don’t recall if it matters if you do the recursive call on the smaller or larger value first.

If you have a persistent cache subsequent calls require O(1) time and stack space and O(n) heap space.

Iteration – if you can’t cache the values (or just want to efficiently initialize a cache) you can use an iterative approach. It requires O(n) time but only O(1) stack and heap space.

Direct approximation – finally there is a well-known approximation using φ, or a variant using sqrt(5). It is O(1) for time, stack space, and heap space. It’s a good approach if you 1) use a lookup table for the smallest values and 2) make sure n is not too big.

The last point is often overlooked. The approximation only works as long as you don’t exceed the precision of your floating point number. F(100,000) should be good. F(1,000,000,000,000) may not be. The iterative approach isn’t practical with numbers this large.

Research

Did you know there’s two other solutions with performance O(lg(n)) (per Wikipedia) in time and space? (I’m not convinced it’s O(lg(n)) since it’s not a divide-and-conquer algorithm – the two recursive calls do not split the initial work between them – but with memoization it’s definitely less than O(n). I suspect but can’t quickly prove it’s O(lg2(n)).)

Per Wikipedia we know:

F(2n-1) = F2(n) + F2(n-1)
F(2n) = F(n)(F(n) + 2F(n-1))

It is straightforward to rewrite this as a recursive method for F(n).

There is another property that considers three cases – F(3n-2), F(3n-1) and F(3n). See the code for details.

These sites provide many additional properties of the Fibonacci and related Lucas sequences. Few developers will ever need to know these properties but in those rare cases an hour of research can save days of work.

Implementation

We can now use our research to implement suitable methods for the Fibonacci and Lucas sequences.

Fibonacci calculation

(This code does not show an optimization using direct approximation for uncached values for sufficiently small n.)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/**
     * Get specified Fibonacci number.
     * @param n
     * @return
     */
    @Override
    public BigInteger get(int n) {
        if (n < 0) {
            throw new IllegalArgumentException("index must be non-negative");
        }
 
        BigInteger value = null;
 
        synchronized (cache) {
            value = cache.get(n);
 
            if (value == null) {
                int m = n / 3;
 
                switch (n % 3) {
                case 0:
                    value = TWO.multiply(get(m).pow(3))
                               .add(THREE.multiply(get(m + 1)).multiply(get(m))
                                         .multiply(get(m - 1)));
 
                    break;
 
                case 1:
                    value = get(m + 1).pow(3)
                                .add(THREE.multiply(get(m + 1)
                                                        .multiply(get(m).pow(2))))
                                .subtract(get(m).pow(3));
 
                    break;
 
                case 2:
                    value = get(m + 1).pow(3)
                                .add(THREE.multiply(get(m + 1).pow(2)
                                                        .multiply(get(m))))
                                .add(get(m).pow(3));
 
                    break;
                }
 
                cache.put(n, value);
            }
        }
 
        return value;
    }

Fibonacci Iterator

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
     * ListIterator class.
     * @author bgiles
     */
    private static final class FibonacciIterator extends ListIterator {
        private BigInteger x = BigInteger.ZERO;
        private BigInteger y = BigInteger.ONE;
 
        public FibonacciIterator() {
        }
 
        public FibonacciIterator(int startIndex, FibonacciNumber fibonacci) {
            this.idx = startIndex;
            this.x = fibonacci.get(idx);
            this.y = fibonacci.get(idx + 1);
        }
 
        protected BigInteger getNext() {
            BigInteger t = x;
            x = y;
            y = t.add(x);
 
            return t;
        }
 
        protected BigInteger getPrevious() {
            BigInteger t = y;
            y = x;
            x = t.subtract(x);
 
            return x;
        }
    }

Lucas calculation

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
     * Get specified Lucas number.
     * @param n
     * @return
     */
    public BigInteger get(int n) {
        if (n < 0) {
            throw new IllegalArgumentException("index must be non-negative");
        }
 
        BigInteger value = null;
 
        synchronized (cache) {
            value = cache.get(n);
 
            if (value == null) {
                value = Sequences.FIBONACCI.get(n + 1)
                                           .add(Sequences.FIBONACCI.get(n - 1));
                cache.put(n, value);
            }
        }
 
        return value;
    }

Lucas iterator

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
     * ListIterator class.
     * @author bgiles
     */
    private static final class LucasIterator extends ListIterator {
        private BigInteger x = TWO;
        private BigInteger y = BigInteger.ONE;
 
        public LucasIterator() {
        }
 
        public LucasIterator(int startIndex, LucasNumber lucas) {
            idx = startIndex;
            this.x = lucas.get(idx);
            this.y = lucas.get(idx + 1);
        }
 
        protected BigInteger getNext() {
            BigInteger t = x;
            x = y;
            y = t.add(x);
 
            return t;
        }
 
        protected BigInteger getPrevious() {
            BigInteger t = y;
            y = x;
            x = t.subtract(x);
 
            return x;
        }
    }

Education

What is the best way to educate other developers about the existence of these unexpected relationships? Code, of course!

What is the best way to educate other developers about the existence of code that demonstrates these relationships? Unit tests, of course!

It is straightforward to write unit tests that simultaneous verify our implementation and inform other developers about tricks they can use to improve their code. The key is to provide a link to additional information.

Fibonacci Sequence

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
public class FibonacciNumberTest extends AbstractRecurrenceSequenceTest {
    private static final BigInteger MINUS_ONE = BigInteger.valueOf(-1);
 
    /**
     * Constructor
     */
    public FibonacciNumberTest() throws NoSuchMethodException {
        super(FibonacciNumber.class);
    }
 
    /**
     * Get number of tests to run.
     */
    @Override
    public int getMaxTests() {
        return 300;
    }
 
    /**
     * Verify the definition is properly implemented.
     *
     * @return
     */
    @Test
    @Override
    public void verifyDefinition() {
        for (int n = 2; n < getMaxTests(); n++) {
            BigInteger u = seq.get(n);
            BigInteger v = seq.get(n - 1);
            BigInteger w = seq.get(n - 2);
            Assert.assertEquals(u, v.add(w));
        }
    }
 
    /**
     * Verify initial terms.
     */
    @Test
    @Override
    public void verifyInitialTerms() {
        verifyInitialTerms(Arrays.asList(ZERO, ONE, ONE, TWO, THREE, FIVE, EIGHT));
    }
 
    /**
     * Verify that every third term is even and the other two terms are odd.
     * This is a subset of the general divisibility property.
     *
     * @return
     */
    @Test
    public void verifyEvenDivisibility() {
        for (int n = 0; n < getMaxTests(); n += 3) {
            Assert.assertEquals(ZERO, seq.get(n).mod(TWO));
            Assert.assertEquals(ONE, seq.get(n + 1).mod(TWO));
            Assert.assertEquals(ONE, seq.get(n + 2).mod(TWO));
        }
    }
 
    /**
     * Verify general divisibility property.
     *
     * @return
     */
    @Test
    public void verifyDivisibility() {
        for (int d = 3; d < getMaxTests(); d++) {
            BigInteger divisor = seq.get(d);
 
            for (int n = 0; n < getMaxTests(); n += d) {
                Assert.assertEquals(ZERO, seq.get(n).mod(divisor));
 
                for (int i = 1; (i < d) && ((n + i) < getMaxTests()); i++) {
                    Assert.assertFalse(ZERO.equals(seq.get(n + i).mod(divisor)));
                }
            }
        }
    }
 
    /**
     * Verify the property that gcd(F(m), F(n)) = F(gcd(m,n)). This is a
     * stronger statement than the divisibility property.
     */
    @Test
    public void verifyGcd() {
        for (int m = 3; m < getMaxTests(); m++) {
            for (int n = m + 1; n < getMaxTests(); n++) {
                BigInteger gcd1 = seq.get(m).gcd(seq.get(n));
                int gcd2 = BigInteger.valueOf(m).gcd(BigInteger.valueOf(n))
                                     .intValue();
                Assert.assertEquals(gcd1, seq.get(gcd2));
            }
        }
    }
 
    /**
     * Verify second identity (per Wikipedia): sum(F(i)) = F(n+2)-1
     */
    @Test
    public void verifySecondIdentity() {
        BigInteger sum = ZERO;
 
        for (int n = 0; n < getMaxTests(); n++) {
            sum = sum.add(seq.get(n));
            Assert.assertEquals(sum, seq.get(n + 2).subtract(ONE));
        }
    }
 
    /**
     * Verify third identity (per Wikipedia): sum(F(2i)) = F(2n+1)-1 and
     * sum(F(2i+1)) = F(2n)
     */
    @Test
    public void verifyThirdIdentity() {
        BigInteger sum = ZERO;
 
        for (int n = 0; n < getMaxTests(); n += 2) {
            sum = sum.add(seq.get(n));
            Assert.assertEquals(sum, seq.get(n + 1).subtract(ONE));
        }
 
        sum = ZERO;
 
        for (int n = 1; n < getMaxTests(); n += 2) {
            sum = sum.add(seq.get(n));
            Assert.assertEquals(sum, seq.get(n + 1));
        }
    }
 
    /**
     * Verify fourth identity (per Wikipedia): sum(iF(i)) = nF(n+2) - F(n+3) + 2
     */
    @Test
    public void verifyFourthIdentity() {
        BigInteger sum = ZERO;
 
        for (int n = 0; n < getMaxTests(); n++) {
            sum = sum.add(BigInteger.valueOf(n).multiply(seq.get(n)));
 
            BigInteger x = BigInteger.valueOf(n).multiply(seq.get(n + 2))
                                     .subtract(seq.get(n + 3)).add(TWO);
            Assert.assertEquals(sum, x);
        }
    }
 
    /**
     * Verify fifth identity (per Wikipedia): sum(F(i)^2) = F(n)F(n+1)
     */
    public void verifyFifthIdentity() {
        BigInteger sum = ZERO;
 
        for (int n = 0; n < getMaxTests(); n += 2) {
            BigInteger u = seq.get(n);
            BigInteger v = seq.get(n + 1);
            sum = sum.add(u.pow(2));
            Assert.assertEquals(sum, u.multiply(v));
        }
    }
 
    /**
     * Verify Cassini's Identity - F(n-1)F(n+1) - F(n)^2 = -1^n
     */
    @Test
    public void verifyCassiniIdentity() {
        for (int n = 2; n < getMaxTests(); n += 2) {
            BigInteger u = seq.get(n - 1);
            BigInteger v = seq.get(n);
            BigInteger w = seq.get(n + 1);
 
            BigInteger x = w.multiply(u).subtract(v.pow(2));
            Assert.assertEquals(ONE, x);
        }
 
        for (int n = 1; n < getMaxTests(); n += 2) {
            BigInteger u = seq.get(n - 1);
            BigInteger v = seq.get(n);
            BigInteger w = seq.get(n + 1);
 
            BigInteger x = w.multiply(u).subtract(v.pow(2));
            Assert.assertEquals(MINUS_ONE, x);
        }
    }
 
    /**
     * Verify doubling: F(2n-1) = F(n)^2 + F(n-1)^2 and F(2n) =
     * F(n)(F(n-1)+F(n+1)) = F(n)(2*F(n-1)+F(n).
     */
    @Test
    public void verifyDoubling() {
        for (int n = 1; n < getMaxTests(); n++) {
            BigInteger u = seq.get(n - 1);
            BigInteger v = seq.get(n);
            BigInteger w = seq.get(n + 1);
 
            BigInteger x = v.multiply(v).add(u.pow(2));
            Assert.assertEquals(seq.get((2 * n) - 1), x);
 
            x = v.multiply(u.add(w));
            Assert.assertEquals(seq.get(2 * n), x);
 
            x = v.multiply(v.add(TWO.multiply(u)));
            Assert.assertEquals(seq.get(2 * n), x);
        }
    }
 
    /**
     * Verify tripling.
     */
    @Test
    public void verifyTripling() {
        for (int n = 1; n < getMaxTests(); n++) {
            BigInteger u = seq.get(n - 1);
            BigInteger v = seq.get(n);
            BigInteger w = seq.get(n + 1);
 
            BigInteger x = TWO.multiply(v.pow(3))
                              .add(THREE.multiply(v).multiply(u).multiply(w));
            Assert.assertEquals(seq.get(3 * n), x);
 
            x = w.pow(3).add(THREE.multiply(w).multiply(v.pow(2)))
                 .subtract(v.pow(3));
            Assert.assertEquals(seq.get((3 * n) + 1), x);
 
            x = w.pow(3).add(THREE.multiply(w.pow(2)).multiply(v)).add(v.pow(3));
            Assert.assertEquals(seq.get((3 * n) + 2), x);
        }
    }
}

Lucas Sequence

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
public class LucasNumberTest extends AbstractRecurrenceSequenceTest {
    private static final FibonacciNumber fibonacci = new FibonacciNumber();
 
    /**
     * Constructor
     */
    public LucasNumberTest() throws NoSuchMethodException {
        super(LucasNumber.class);
    }
 
    /**
     * Get number of tests to run.
     */
    @Override
    public int getMaxTests() {
        return 300;
    }
 
    /**
     * Verify the definition is properly implemented.
     *
     * @return
     */
    @Test
    @Override
    public void verifyDefinition() {
        for (int n = 2; n < getMaxTests(); n++) {
            BigInteger u = seq.get(n);
            BigInteger v = seq.get(n - 1);
            BigInteger w = seq.get(n - 2);
            Assert.assertEquals(u, v.add(w));
        }
    }
 
    /**
     * Verify initial terms.
     */
    @Test
    @Override
    public void verifyInitialTerms() {
        verifyInitialTerms(Arrays.asList(TWO, ONE, THREE, FOUR, SEVEN, ELEVEN,
                BigInteger.valueOf(18), BigInteger.valueOf(29)));
    }
 
    /**
     * Verify Lucas properties.
     */
    @Test
    public void verifyLucas() {
        // L(n) = F(n-1) + F(n+1)
        for (int n = 2; n < getMaxTests(); n++) {
            Assert.assertEquals(seq.get(n),
                fibonacci.get(n - 1).add(fibonacci.get(n + 1)));
        }
    }
 
    /**
     *  F(2n) = L(n)F(n)
     */
    @Test
    public void verifyLucas2() {
        for (int n = 2; n < getMaxTests(); n++) {
            Assert.assertEquals(fibonacci.get(2 * n),
                seq.get(n).multiply(fibonacci.get(n)));
        }
    }
 
    /**
     * F(n) = (L(n-1)+ L(n+1))/5
     */
    @Test
    public void verifyLucas3() {
        for (int n = 2; n < getMaxTests(); n++) {
            Assert.assertEquals(FIVE.multiply(fibonacci.get(n)),
                seq.get(n - 1).add(seq.get(n + 1)));
        }
    }
 
    /**
     * L(n)^2 = 5 F(n)^2 + 4(-1)^n
     */
    @Test
    public void verifyLucas4() {
        for (int n = 2; n < getMaxTests(); n += 2) {
            Assert.assertEquals(seq.get(n).pow(2),
                FIVE.multiply(fibonacci.get(n).pow(2)).add(FOUR));
        }
 
        for (int n = 1; n < getMaxTests(); n += 2) {
            Assert.assertEquals(seq.get(n).pow(2),
                FIVE.multiply(fibonacci.get(n).pow(2)).subtract(FOUR));
        }
    }
}

Conclusion

Obviously developers rarely need to compute Fibonacci numbers unless they’re working on Project Euler problems or at a job interview. This code isn’t going to have direct utility.

At the same time it’s a powerful demonstration of the value of investing an hour or two in research even if you’re sure you already know everything you need to know. You probably don’t need BigInteger implementation but some people might consider the O(lg(n)) approach preferable to the estimate using powers of φ, or could make good use of the relationships discussed on the MathWorld and Wikipedia pages.

Source Code

The good news is that I have published the source code for this… and the bad news is it’s part of ongoing doodling when I’m doing Project Euler problems. (There are no solutions here – it’s entirely explorations of ideas inspired by the problems. So the code is a little rough and should not be used to decide whether or not to bring me in for an interview (unless you’re impressed): http://github.com/beargiles/projecteuler.

Reference: Fibonacci and Lucas Sequences from our JCG partner Bear Giles at the Invariant Properties blog.
Subscribe
Notify of
guest


This site uses Akismet to reduce spam. Learn how your comment data is processed.

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
Back to top button