Core Java

JLBH Examples 4 – Benchmarking QuickFix vs ChronicleFix

In this post:

  • Using JLBH to test QuickFIX
  • Observing how QuickFix latencies degrade through the percentiles
  • Comparing QuickFIX with Chronicle FIX

As mentioned in the Introduction to JLBH the primary reason JLBH was created was to measure the Chronicle-FIX engine.

We use all the features of JLBH, particularly the throughput lever and the accounting for coordinated omission to get some realistic timings for QuickFIX.

Later in this article we will look at some results for ChronicleFIX but first let’s look at benchmarking QuickFix the open source implementation of a Fix Engine.

This is the scenario we will be benchmarking:

  • The client creates a NewOrderSingle which is then passed to the server.
  • The server parses the NewOrderSingle
  • The server creates an ExecutionReport which is send back to the client.
  • The client receives the ExecutionReport

End to end time is measured from when the client starts creating the NewOrderSingle to when the client receives the ExecutionReport.

Note: We need to keep the start time that the benchmark was called with right the the program. In order to do this we use a trick and set the start time to the tag ClOrdId.

If you want to get the benchmark running on your servers you should clone this GitHub repo all jars and configurations files are set up there.

For the sake of this post here’s the code for the benchmark.

package org.latency.quickfix;

import net.openhft.chronicle.core.Jvm;
import net.openhft.chronicle.core.jlbh.JLBHOptions;
import net.openhft.chronicle.core.jlbh.JLBHTask;
import net.openhft.chronicle.core.jlbh.JLBH;
import quickfix.*;
import quickfix.field.*;
import quickfix.fix42.ExecutionReport;
import quickfix.fix42.NewOrderSingle;

import java.util.Date;
import java.util.concurrent.Executors;

/**
 * Created by daniel on 19/02/2016.
 * Latency task to test sending a message in QuickFix
 */
public class QFJLBHTask implements JLBHTask {


    private QFClient client;
    private JLBH lth;
    private static NewOrderSingle newOrderSingle;
    private static ExecutionReport executionReport;

    public static void main(String[] args) {
        executionReport = new ExecutionReport();
        executionReport.set(new AvgPx(110.11));
        executionReport.set(new CumQty(7));
        executionReport.set(new ClientID("TEST"));
        executionReport.set(new ExecID("tkacct.151124.e.EFX.122.6"));
        executionReport.set(new OrderID("tkacct.151124.e.EFX.122.6"));
        executionReport.set(new Side('1'));
        executionReport.set(new Symbol("EFX"));
        executionReport.set(new ExecType('2'));
        executionReport.set(new ExecTransType('0'));
        executionReport.set(new OrdStatus('0'));
        executionReport.set(new LeavesQty(0));

        newOrderSingle = new NewOrderSingle();

        newOrderSingle.set(new OrdType('2'));
        newOrderSingle.set(new Side('1'));
        newOrderSingle.set(new Symbol("LCOM1"));
        newOrderSingle.set(new HandlInst('3'));
        newOrderSingle.set(new TransactTime(new Date()));
        newOrderSingle.set(new OrderQty(1));
        newOrderSingle.set(new Price(200.0));
        newOrderSingle.set(new TimeInForce('0'));
        newOrderSingle.set(new MaturityMonthYear("201106"));
        newOrderSingle.set(new SecurityType("FUT"));
        newOrderSingle.set(new IDSource("5"));
        newOrderSingle.set(new SecurityID("LCOM1"));
        newOrderSingle.set(new Account("ABCTEST1"));

        JLBHOptions jlbhOptions = new JLBHOptions()
                .warmUpIterations(20_000)
                .iterations(10_000)
                .throughput(2_000)
                .runs(3)
                .accountForCoordinatedOmmission(false)
                .jlbhTask(new QFJLBHTask());
        new JLBH(jlbhOptions).start();
    }

    @Override
    public void init(JLBH lth) {
        this.lth = lth;
        Executors.newSingleThreadExecutor().submit(() ->
        {
            QFServer server = new QFServer();
            server.start();
        });
        Jvm.pause(3000);
        client = new QFClient();
        client.start();
    }

    @Override
    public void complete() {
        System.exit(0);
    }

    @Override
    public void run(long startTimeNs) {
        newOrderSingle.set(new ClOrdID(Long.toString(startTimeNs)));
        try {
            Session.sendToTarget(newOrderSingle, client.sessionId);
        } catch (SessionNotFound sessionNotFound) {
            sessionNotFound.printStackTrace();
        }
    }

    private class QFServer implements Application {
        void start() {
            SocketAcceptor socketAcceptor;
            try {
                SessionSettings executorSettings = new SessionSettings(
                        "src/main/resources/acceptorSettings.txt");
                FileStoreFactory fileStoreFactory = new FileStoreFactory(
                        executorSettings);
                MessageFactory messageFactory = new DefaultMessageFactory();
                FileLogFactory fileLogFactory = new FileLogFactory(executorSettings);
                socketAcceptor = new SocketAcceptor(this, fileStoreFactory,
                        executorSettings, fileLogFactory, messageFactory);
                socketAcceptor.start();
            } catch (ConfigError e) {
                e.printStackTrace();
            }
        }

        @Override
        public void onCreate(SessionID sessionId) {
        }


        @Override
        public void onLogon(SessionID sessionId) {
        }


        @Override
        public void onLogout(SessionID sessionId) {
        }


        @Override
        public void toAdmin(Message message, SessionID sessionId) {
        }


        @Override
        public void fromAdmin(Message message, SessionID sessionId)
                throws FieldNotFound, IncorrectDataFormat, IncorrectTagValue,
                RejectLogon {
        }


        @Override
        public void toApp(Message message, SessionID sessionId) throws DoNotSend {
        }


        @Override
        public void fromApp(Message message, SessionID sessionId)
                throws FieldNotFound, IncorrectDataFormat, IncorrectTagValue,
                UnsupportedMessageType {
            try {
                executionReport.set(((NewOrderSingle) message).getClOrdID());
                Session.sendToTarget(executionReport, sessionId);
            } catch (SessionNotFound invalidMessage) {
                invalidMessage.printStackTrace();
            }
        }
    }

    private class QFClient implements Application {
        private SessionID sessionId = null;

        void start() {
            SocketInitiator socketInitiator;
            try {
                SessionSettings sessionSettings = new SessionSettings("src/main/resources/initiatorSettings.txt");
                FileStoreFactory fileStoreFactory = new FileStoreFactory(sessionSettings);
                FileLogFactory logFactory = new FileLogFactory(sessionSettings);
                MessageFactory messageFactory = new DefaultMessageFactory();
                socketInitiator = new SocketInitiator(this,
                        fileStoreFactory, sessionSettings, logFactory,
                        messageFactory);
                socketInitiator.start();
                sessionId = socketInitiator.getSessions().get(0);
                Session.lookupSession(sessionId).logon();
                while (!Session.lookupSession(sessionId).isLoggedOn()) {
                    Thread.sleep(100);
                }
            } catch (Throwable exp) {
                exp.printStackTrace();
            }
        }

        @Override
        public void fromAdmin(Message arg0, SessionID arg1) throws FieldNotFound,
                IncorrectDataFormat, IncorrectTagValue, RejectLogon {
        }


        @Override
        public void fromApp(Message message, SessionID arg1) throws FieldNotFound,
                IncorrectDataFormat, IncorrectTagValue, UnsupportedMessageType {
            long startTime = Long.parseLong(((ExecutionReport) message).getClOrdID().getValue());
            lth.sample(System.nanoTime() - startTime);
        }

        @Override
        public void onCreate(SessionID arg0) {
        }

        @Override
        public void onLogon(SessionID arg0) {
            System.out.println("Successfully logged on for sessionId : " + arg0);
        }

        @Override
        public void onLogout(SessionID arg0) {
            System.out.println("Successfully logged out for sessionId : " + arg0);
        }

        @Override
        public void toAdmin(Message message, SessionID sessionId) {
            boolean result;
            try {
                result = MsgType.LOGON.equals(message.getHeader().getField(new MsgType()).getValue());
            } catch (FieldNotFound e) {
                result = false;
            }
            if (result) {
                ResetSeqNumFlag resetSeqNumFlag = new ResetSeqNumFlag();
                resetSeqNumFlag.setValue(true);
                ((quickfix.fix42.Logon) message).set(resetSeqNumFlag);
            }
        }

        @Override
        public void toApp(Message arg0, SessionID arg1) throws DoNotSend {
        }

    }
}

These are the results that I see running on my server Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz.
At a throughput of 2,000/s

Percentile   run1         run2         run3      % Variation
50:           270.34       270.34       233.47         9.52
90:           352.26       335.87      1867.78        75.25
99:          6684.67      4849.66     69206.02        89.84
99.9:       13369.34     12845.06    163577.86        88.67
99.99:      81788.93     20447.23    163577.86        82.35
worst:     111149.06     98566.14    163577.86        30.54

At a throughput of 10,000/s

Percentile   run1         run2         run3      % Variation
50:           184.32       176.13       176.13         0.00 
90:           573.44       270.34       249.86         5.18 
99:         19398.66      2686.98      5111.81        37.56 
99.9:       28835.84      7733.25      7995.39         2.21 
99.99:      30932.99      9699.33      9175.04         3.67 
worst:      30932.99      9699.33      9175.04         3.67

The mean here is ~200us but as you up through the percentiles the latencies really begin to degrade. A lot of this is due to the amount of garbage that is being created! You can see this by running the benchmark with the jvm flag -verbosegc. In fact when you up the throughput to 50,000/s even your 90th percentile (1 in every 10 iterations) is completely blown and you end up with multi millisecond delays.

At a throughput of 50,00/s

Percentile   run1         run2         run3      % Variation   var(log)
50:           176.13       176.13       176.13         0.00       11.82
90:         12845.06     29884.42      3604.48        82.94       21.01
99:         34603.01     94371.84     17301.50        74.81       25.26
99.9:       42991.62     98566.14     25690.11        65.41       25.84
99.99:      45088.77     98566.14     27787.26        62.94       25.93
worst:      45088.77     98566.14     27787.26        62.94       25.93

The issues here are not just the mean time (assuming that ~200us is too slow for you) but even more worryingly the way the numbers degrade as throughput is raised and as you study the higher percentiles. Let’s compare this Chronicle-FIX.  The test is run for exactly the same scenario and on the same machine.
The results look like this:

At a throughput of 2000/s

Percentile   run1         run2         run3      % Variation   
50:            16.90        16.90        16.90       0.00    
90:            18.94        18.94        18.94       0.00    
99:            26.11        30.21        23.04       17.18    
99.9:          35.84        39.94        33.79       10.81    
99.99:        540.67       671.74       401.41       65.41    
worst:        638.98      1081.34       606.21       61.59

At a throughput of 10,000/s

Percentile   run1         run2         run3      % Variation   
50:            16.90        16.90        16.13         3.08     
90:            18.94        18.94        18.94         0.00     
99:            26.11        22.02        20.99         3.15     
99.9:          88.06        33.79        83.97        49.75     
99.99:        999.42       167.94       802.82        71.59     
worst:       1146.88       249.86       966.66        65.67

At a throughput of 50,000/s

Percentile   run1         run2         run3      % Variation  
50:            15.62        15.10        15.62         2.21     
90:            17.92        16.90        16.90         0.00        
99:            22.02        30.21        29.18         2.29        
99.9:         120.83       352.26        33.79        86.27       
99.99:        335.87       802.82        96.26        83.03       
worst:        450.56       901.12       151.55        76.73

The Chronicle-FIX mean is around 16us which is 12 times faster than QuickFIX. But it’s more than that because nearly all that time is in the TCP round trip.  When you measure the TCP time (see last post JLBH Examples 3 – The Affects of Throughput on Latency) it turns out that most of that time is TCP ~10us. Therefore if you deduct the TCP times you get.

  • QuickFix       200 – 10 = 190
  • Chronicle-FIX   16 – 10 = 6
  • Chronicle-FIX is over 30 times faster than QF

And as has been demonstrated if you care about your upper percentiles than it get much worse than that. For completeness it should be noted that that the server this was benchmarked on was reasonably noisy.  It had latency spikes of around 400us which accounts for the larger numbers that are shown up in the higher percentiles. Also this test uses loopback TCP which puts a huge stress on the Linux kernel.  In fact strange things happen when you push the throughput up really high (you can try this with the simple TCP test) – so this is not the best way to test Chronicle-FIX.  It is only used as a comparison against Quick FIX.

Using Chronicle-FIX, if you measure the parsing of a fix message into its data model, including logging, on a tuned server you actually see this profile tested across throughput profiles from 10,000/s to 200,000/s:

Percentile   run1         run2         run3         run4         run5    
50:             1.01         1.01         1.01         1.01         1.06
90:             1.12         1.12         1.12         1.12         1.12        
99:             1.38         1.31         1.44         1.31         2.11        
99.9:           2.88         2.88         2.88         2.88         4.03      
99.99:          3.26         3.14         3.39         3.14         6.02       
worst:          5.25         6.27        22.02        20.99        18.94

Daniel Shaya

Daniel has been programming in Java since it was in beta. Working predominantly in the finance industry he has created real time trading and margin risk applications. He is currently a director at OpenHFT where we are building next generation Java low latency products.
Subscribe
Notify of
guest

This site uses Akismet to reduce spam. Learn how your comment data is processed.

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
Back to top button