Serverless: Building a mini producer/consumer data pipeline with AWS SNS
I wanted to create a little data pipeline with Serverless whose main use would be to run once a day, call an API, and load that data into a database.
It’s mostly used to pull in recent data from that API, but I also wanted to be able to invoke it manually and specify a date range.
I created the following pair of lambdas that communicate with each other via an SNS topic.
The code
serverless.yml
service: marks-blog frameworkVersion: ">=1.2.0 <2.0.0" provider: name: aws runtime: python3.6 timeout: 180 iamRoleStatements: - Effect: 'Allow' Action: - "sns:Publish" Resource: - ${self:custom.BlogTopic} custom: BlogTopic: Fn::Join: - ":" - - arn - aws - sns - Ref: AWS::Region - Ref: AWS::AccountId - marks-blog-topic functions: message-consumer: name: MessageConsumer handler: handler.consumer events: - sns: topicName: marks-blog-topic displayName: Topic to process events message-producer: name: MessageProducer handler: handler.producer events: - schedule: rate(1 day)
handler.py
import boto3 import json import datetime from datetime import timezone def producer(event, context): sns = boto3.client('sns') context_parts = context.invoked_function_arn.split(':') topic_name = "marks-blog-topic" topic_arn = "arn:aws:sns:{region}:{account_id}:{topic}".format( region=context_parts[3], account_id=context_parts[4], topic=topic_name) now = datetime.datetime.now(timezone.utc) start_date = (now - datetime.timedelta(days=1)).strftime("%Y-%m-%d") end_date = now.strftime("%Y-%m-%d") params = {"startDate": start_date, "endDate": end_date, "tags": ["neo4j"]} sns.publish(TopicArn= topic_arn, Message= json.dumps(params)) def consumer(event, context): for record in event["Records"]: message = json.loads(record["Sns"]["Message"]) start_date = message["startDate"] end_date = message["endDate"] tags = message["tags"] print("start_date: " + start_date) print("end_date: " + end_date) print("tags: " + str(tags))
Trying it out
We can simulate a message being received locally by executing the following command:
$ serverless invoke local \ --function message-consumer \ --data '{"Records":[{"Sns": {"Message":"{\"tags\": [\"neo4j\"], \"startDate\": \"2017-09-25\", \"endDate\": \"2017-09-29\" }"}}]}' start_date: 2017-09-25 end_date: 2017-09-29 tags: ['neo4j'] null
That seems to work fine. What about if we invoke the message-producer on AWS?
$ serverless invoke --function message-producer null
Did the consumer received the message?
$ serverless logs --function message-consumer START RequestId: 0ef5be87-a5b1-11e7-a905-f1387e68c65f Version: $LATEST start_date: 2017-09-29 end_date: 2017-09-30 tags: ['neo4j'] END RequestId: 0ef5be87-a5b1-11e7-a905-f1387e68c65f REPORT RequestId: 0ef5be87-a5b1-11e7-a905-f1387e68c65f Duration: 0.46 ms Billed Duration: 100 ms Memory Size: 1024 MB Max Memory Used: 32 MB
Looks like it! We can also invoke the consumer directly on AWS:
$ serverless invoke \ --function message-consumer \ --data '{"Records":[{"Sns": {"Message":"{\"tags\": [\"neo4j\"], \"startDate\": \"2017-09-25\", \"endDate\": \"2017-09-26\" }"}}]}' null
And now if we check the consumer’s logs we’ll see both messages:
$ serverless logs --function message-consumer START RequestId: 0ef5be87-a5b1-11e7-a905-f1387e68c65f Version: $LATEST start_date: 2017-09-29 end_date: 2017-09-30 tags: ['neo4j'] END RequestId: 0ef5be87-a5b1-11e7-a905-f1387e68c65f REPORT RequestId: 0ef5be87-a5b1-11e7-a905-f1387e68c65f Duration: 0.46 ms Billed Duration: 100 ms Memory Size: 1024 MB Max Memory Used: 32 MB START RequestId: 4cb42bc9-a5b1-11e7-affb-99fa6b4dc3ed Version: $LATEST start_date: 2017-09-25 end_date: 2017-09-26 tags: ['neo4j'] END RequestId: 4cb42bc9-a5b1-11e7-affb-99fa6b4dc3ed REPORT RequestId: 4cb42bc9-a5b1-11e7-affb-99fa6b4dc3ed Duration: 16.46 ms Billed Duration: 100 ms Memory Size: 1024 MB Max Memory Used: 32 MB
Success!
Published on Java Code Geeks with permission by Mark Needham, partner at our JCG program. See the original article here: Serverless: Building a mini producer/consumer data pipeline with AWS SNS Opinions expressed by Java Code Geeks contributors are their own. |