Software Development

Hybrid Quantum-Classical Computing: Examples for Optimization

Hybrid quantum-classical computing combines the strengths of classical and quantum systems to solve complex optimization problems. While quantum computers excel at exploring large solution spaces, classical computers handle preprocessing, postprocessing, and control logic. This article focuses on implementing hybrid quantum-classical computing in Java, with practical examples for optimization problems.

1. Key Concepts

1.1 What is Hybrid Quantum-Classical Computing?

Hybrid quantum-classical computing
https://www.epiqc.cs.uchicago.edu/hybrid-quantum-classical-computing
  • Classical Computing: Handles data processing, control logic, and refinement.
  • Quantum Computing: Solves specific tasks like optimization using quantum algorithms.
  • Synergy: Combines both to tackle problems more efficiently.

1.2 Applications in Optimization

  • Traveling Salesman Problem (TSP)
  • Portfolio Optimization
  • Supply Chain Optimization
  • Machine Learning Hyperparameter Tuning

2. Tools for Hybrid Quantum-Classical Computing in Java

1. Strange

  • A Java library for quantum computing.
  • Integrates with classical Java code for hybrid workflows.
  • Supports quantum algorithms like QAOA and Grover’s search.

2. JQuantum

  • A Java-based quantum computing framework.
  • Provides tools for simulating quantum circuits and hybrid algorithms.

3. Example: Hybrid Optimization with Strange

Below is an example of implementing a hybrid quantum-classical optimization workflow using the Strange library.

Step 1: Add Dependencies

Add the Strange library to your pom.xml:

1
2
3
4
5
<dependency>
    <groupId>org.redfx</groupId>
    <artifactId>strange</artifactId>
    <version>0.1.0</version>
</dependency>

Step 2: Implement QAOA for Optimization

QAOA (Quantum Approximate Optimization Algorithm) is a popular hybrid algorithm for solving optimization problems. Here’s how you can implement it in Java:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import org.redfx.strange.algorithm.QAOA;
import org.redfx.strange.algorithm.QAOAProblem;
import org.redfx.strange.algorithm.QAOAResult;
import org.redfx.strange.gate.Hadamard;
import org.redfx.strange.gate.Rotation;
import org.redfx.strange.gate.X;
import org.redfx.strange.local.SimpleQuantumExecutionEnvironment;
import org.redfx.strange.Program;
import org.redfx.strange.Qubit;
import org.redfx.strange.Step;
import org.redfx.strange.QuantumExecutionEnvironment;
 
public class HybridOptimizationExample {
 
    public static void main(String[] args) {
        // Define the problem Hamiltonian (example: Max-Cut problem)
        double[][] hamiltonian = {
            {0, 1, 1, 0},
            {1, 0, 0, 1},
            {1, 0, 0, 1},
            {0, 1, 1, 0}
        };
 
        // Create a QAOA problem instance
        QAOAProblem problem = new QAOAProblem(hamiltonian, 2); // 2 layers
 
        // Set up the quantum execution environment
        QuantumExecutionEnvironment env = new SimpleQuantumExecutionEnvironment();
 
        // Run QAOA
        QAOAResult result = QAOA.run(problem, env);
 
        // Print the result
        System.out.println("Optimal solution: " + result.getOptimalSolution());
        System.out.println("Optimal value: " + result.getOptimalValue());
    }
}

Explanation:

  1. Hamiltonian: Represents the optimization problem (e.g., Max-Cut).
  2. QAOAProblem: Encapsulates the problem and the number of QAOA layers.
  3. QuantumExecutionEnvironment: Simulates the quantum computation.
  4. QAOA.run: Executes the QAOA algorithm and returns the optimal solution.

4. Example: Classical Preprocessing and Postprocessing

In a hybrid workflow, classical computers handle preprocessing and postprocessing. Below is an example of integrating classical logic with quantum computation:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import org.redfx.strange.algorithm.QAOA;
import org.redfx.strange.algorithm.QAOAProblem;
import org.redfx.strange.algorithm.QAOAResult;
import org.redfx.strange.local.SimpleQuantumExecutionEnvironment;
import org.redfx.strange.QuantumExecutionEnvironment;
 
public class HybridWorkflowExample {
 
    public static void main(String[] args) {
        // Classical preprocessing: Define the problem
        double[][] hamiltonian = generateHamiltonian(); // Example: Generate a Hamiltonian
        int layers = 3; // Number of QAOA layers
 
        // Create a QAOA problem instance
        QAOAProblem problem = new QAOAProblem(hamiltonian, layers);
 
        // Set up the quantum execution environment
        QuantumExecutionEnvironment env = new SimpleQuantumExecutionEnvironment();
 
        // Run QAOA
        QAOAResult result = QAOA.run(problem, env);
 
        // Classical postprocessing: Analyze and refine the result
        int[] solution = result.getOptimalSolution();
        double value = result.getOptimalValue();
 
        System.out.println("Optimal solution: " + arrayToString(solution));
        System.out.println("Optimal value: " + value);
    }
 
    // Classical preprocessing: Generate a Hamiltonian
    private static double[][] generateHamiltonian() {
        return new double[][] {
            {0, 1, 1, 0},
            {1, 0, 0, 1},
            {1, 0, 0, 1},
            {0, 1, 1, 0}
        };
    }
 
    // Helper method to convert array to string
    private static String arrayToString(int[] array) {
        StringBuilder sb = new StringBuilder();
        for (int i : array) {
            sb.append(i).append(" ");
        }
        return sb.toString().trim();
    }
}

Explanation:

  1. Classical Preprocessing: Generates the Hamiltonian and sets up the problem.
  2. Quantum Computation: Runs QAOA to find candidate solutions.
  3. Classical Postprocessing: Analyzes and refines the quantum-generated solutions.

5. Conclusion

Hybrid quantum-classical computing is a powerful approach to solving optimization problems by combining the strengths of classical and quantum systems. With tools like Strange and JQuantum, you can implement hybrid workflows in Java, leveraging quantum algorithms like QAOA while relying on classical computers for preprocessing and postprocessing.

By adopting hybrid quantum-classical computing, you can tackle complex optimization problems more efficiently, paving the way for advancements in fields like logistics, finance, and machine learning. Happy coding! 🚀

Eleftheria Drosopoulou

Eleftheria is an Experienced Business Analyst with a robust background in the computer software industry. Proficient in Computer Software Training, Digital Marketing, HTML Scripting, and Microsoft Office, they bring a wealth of technical skills to the table. Additionally, she has a love for writing articles on various tech subjects, showcasing a talent for translating complex concepts into accessible content.
Subscribe
Notify of
guest


This site uses Akismet to reduce spam. Learn how your comment data is processed.

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
Back to top button